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Abstract

This paper suggests that people can learn to behave in a way which makes

them unlucky or lucky. Learning from experience will lead them to make

choices which may lead to “luckier” outcomes than others. By so doing they

may reinforce the choices of those who find themselves with unlucky outcomes.

In this situation, people have reasonably learned to behave as they do and

their behaviour is consistent with their experience. The lucky ones were not

“born under a lucky star” they learned to be lucky.
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1 Introduction

There are many attitudes to success. For some it is jealousy, based on the belief that

the successful are just lucky and that they do not merit what they have obtained,

for others it is admiration for the effort or skill that must have led to the success.

What is interesting is that there does not seem to be a clear and commonly accepted

definition of luck. The Oxford Dictionary provides us with the following definition:

“success or failure apparently brought by chance rather than by one’s own actions.”

The idea that “luck” is exogenous to one’s own actions has led to a debate on

the importance of “luck” versus “action” in determining success. Discussions such

as “luck” versus “skill” in the management and finance literature (e.g., Hartzmark,

1991; Gompers et al., 2006; Cuthbertson et al., 2008), and “luck” versus “policy”

in the macroeconomic literature (e.g., Ahmed et al., 2004; Leung et al., 2004) are a

few examples.

People’s perception of the importance of “luck” versus “effort” in determining

ones’ success can have a strong effect on the degree of government intervention in

a society (Piketty, 1995; Alesina and Angeletos, 2005) or severity of punishment

for criminals (Di Tella and Dubra, 2008). These authors argue that in a society

where people believe that individual efforts determine success, a lower degree of

government intervention or a severer punishment for criminals will be chosen. On

the other hand, the degree of government intervention will be higher in a society

where people believe that luck, not individual efforts, determines success.

Regardless of the belief in a society about the importance of luck in determining

one’s own success, we have many expressions such as “fortune favours the brave”

or “nothing venture nothing gain” which suggest that behaviour and attitudes can

contribute to apparently lucky favourable outcomes.

Take the simple example of car insurance. Here two factors are in play. Firstly,

there is the idea that certain events are due purely to “bad luck” and that the con-

sequences of these should be mutualised and then there is the problem of adverse

selection. Those who insure themselves are more likely to be those to whom “un-

lucky” events may happen. Bad drivers do not have the same probabilities of an

accident as good drivers almost by definition. Insurance policies with their “bonus”

and “malus” are structured to separate out these two problems.

But this means that, since it is possible to improve one’s driving by learning,

one can learn to become “lucky” or, put alternatively, to experience fewer negative

shocks than others. An alternative view, that of a psychologist Richard Wiseman

(2003), suggests that “lucky” people are more aware of the opportunities that arise
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and hence more likely to profit from them. Thus it is not enough to study the

process of arrival of “good” or “bad” luck but rather the attitude of the actors

themselves. Others have argued that more optimistic people tend to be luckier and

some psychologists such as Martin Seligman (1991) suggest that one can learn to be

optimistic.

It is actually quite difficult to cite examples of “pure luck”. Winning a large

sum in a National Lottery might seem like an obvious example. However, you can

learn how to increase the expected value of the outcome, at least in some countries,

by studying the numbers that people choose. Some are very popular and some are

hardly chosen at all. Therefore, armed with this information, one should choose an

unpopular number since, if one wins, one has to share her gains with fewer people.

This remark points to another important feature of certain lucky outcomes which

is that they are part of a constant sum game. What one individual gains deprives the

others of that opportunity. Thus, good luck for some implies, in this framework, bad

luck for others. This means that if one person learns how to seize lucky occasions

he may deprive others and thereby make them “unlucky”.

What we will suggest in this paper is that people can, in some cases, learn to

behave in a way which makes them unlucky or lucky. Learning from experience will

lead them to make choices which may lead to “luckier” outcomes than others. By

so doing they may reinforce the choices of those who find themselves with unlucky

outcomes. Our simple example is based on the everyday experience of one of us in

parking his car. There are many parking spots in the small streets leading to the

Vieille Charité in Marseille, where the group to which one of us belongs, is based.

Having taken a spot, one then walks the rest of the way and this takes time and

effort. What one observes, is that some people are systematically parked close to the

office while others are always far away. Excluding ex-ante heterogeneity of agents

in their access to the parking, the natural question is: are the former just lucky or

is something else at work? We wish to suggest that people have reasonably learned

to behave as they do and that their behavior is consistent with their experience.

The lucky ones were not “born under a lucky star”, they learned to be lucky.1 The

second important issue concerns those aspects in the environment of agents which

favors asymmetric outcomes with individuals being persistently lucky (or unlucky).

We find that such state of affairs to prevails depending both on the way agents learn,

1Note that, in this paper, we are not trying to explain the reason for which people tend to
attribute success to their own skills and failures to bad luck. Consideration for such “self-serving”
bias can be found, for example, in Compte and Postlewaite (2004); van den Steen (2002) and the
literature cited therein.
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on payoffs and on the timing of the search process. Specifically, an high degree of

synchronization in the access to parking, with most agents going to and leaving work

at roughly the same time (in the morning and in the afternoon, respectively), favors

asymmetric outcomes whereas asynchronous access to resources favors symmetric

outcomes. Interestingly, increasing the cost agents incur if they fail to find a parking,

favors asymmetric outcomes only in an intermediate range.

Although the model will be presented with a particular example of parking along

the one way street, the same idea can be applied to other situations in which agents

search for better deals. For example, in a market place, buyers search for cheaper

prices by visiting several sellers.2 What buyers do not know in this case is the prices

offered by various sellers in the market. In the standard model of search, buyers

have some beliefs about the underlying distribution of prices offered by the sellers

in the market, and decide to accept the proposed price by comparing the cost and

the expected benefit of continuing their search for better offers.

There is a literature on the optimal strategy to adopt when one is faced with a

series of prospects but with no possibility of revisiting previous candidates. This is

studied by Krishnan (2006) who likens the problem to that of choosing an exit from

a highway. Once one has taken a particular exit one cannot, in general, go back to

previous exits nor profit from later ones. However, the fact that the behaviour of

others influences the choices available is not taken into account.

Our problem also is related to the famous “secretary problem” originally posed

by Gleason in 1955 according to Gilbert and Mosteller (1966). In this problem

surveyed by Freeman (1983) and Chow et al. (1991), one is faced with a string of

secretaries and has to choose one. In the classical version the number of secretaries

is finite and if one gets to the last candidate that candidate has to be selected. The

problem is when to stop and choose the current candidate. As in our case there is

no going back. Two features are different from those of our problem. Firstly, as

in the previous case the interference from other secretary hirers is not taken into

account. Secondly, in our problem the value of each successive slot is increasing but

only if it is free. Otherwise it provides no value to the person searching. Gilbert

and Mosteller (1966) did, in fact, treat a strategic version of the problem since the

selector is faced with an opponent who can decide in which order to present the

2Literature on learning by buyers in the market mostly focuses on buyers learning which seller
to visit. See, among others, Weisbuch et al. (2000); Hopkins (2007), which also reports evidence
of consistent heterogeneity in prices across buyers. Of course, it is not only buyers who learn in
the market but also sellers learn about the best price to charge. See Hopkins and Seymour (2002)
for an interesting analysis for such cases.
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candidates.

Steblay et al. (2001) look at the problem of a police line-up in which the suspects

are presented sequentially but the person who has to identify the criminal has to

identify him on the spot and cannot go back to the previous suspects. Again, there

is no competition for the suspects amongst those identifying.

Lee et al. (2004) examine the capacity of people to choose in this sort of problem

in an experimental setting. Their interest was in the psychological aspect of the

choice making which is, of course, related to our idea that luck is not random but

due to other factors.

The question the standard search literature does not address, in general, is how

buyers form their beliefs about the distribution of opportunities (see, however, Roth-

schild, 1974). Our working hypothesis is that agents learn what to accept through

trials and errors, although they may not necessarily learn the underlying distribu-

tion of opportunities. In other words, in our paper, the agents are not learning to

solve this problem, which is why they can converge to different solutions in spite of

the fact that they face the same problem. Notice, furthermore, that in our context

the underlying distribution of the opportunities available to an agent is determined

endogenously, as it depends on what other agents have learned to accept.

While our emphasis is on learning, we shall first propose an analysis of some

static results, for large populations, in two extreme cases. These two cases bring

polar predictions on the emergence of lucky and unlucky individuals. We shall then

proceed to analyze the learning dynamics. However, a simple theoretical analysis

can be done only in the case of two agents. The general case of a large population

of agents will be analyzed through numerical simulations. What we find, confirms

both the qualitative features disclosed by the analysis of learning in the case of two

agent, and the polar predictions of our static analysis.

2 The Model

Consider a hypothetical city where there is a one way street leading to the city center.

This is the unique street in the city where people can park their cars. Suppose there

are S parking spots that are distributed evenly along the street. Parking spots are

indexed by their distance from the city center, so that spot s ∈ {1, 2, ..., S} is at

distance s − 1 from the center.

There are N ≥ S agents living around the city.3 At the beginning of each period

3The case of N < S is equivalent to considering the case with N parking spots although the
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t ∈ {0, 1, 2, ..., }, each agent can be either in the city, already parked, or outside the

city. If an agent is outside the city, there is a probability pe that she comes into the

city and looks for a parking spot along the one way street. When an agent looks for

a parking spot, she chooses a strategy k ∈ {1, .., S} which means that she will park

at the first empty spot, s, that is closer to the center than spot k + 1 (i.e, s ≤ k).

When she parks at spot s, she receives the payoff π(s). The payoff is normalized

between zero (π(S) = 0) and one (i.e. π(1) = 1), and is decreasing in s, i.e, the

closer the spot is to the center, the higher the payoff is. As a specific case, we shall

consider the payoff for parking at spot s as being given by

π(s) = 1 −
(

s − 1

S − 1

)α

(1)

where α > 0 is a parameter that determines the curvature of the payoff function.

If she did (could) not park before reaching the city center, she has to park at

a pay parking lot. Because of the fee this entails, she receives payoff −L (where

L ≥ 0) when she fails to park before the city center, i.e., the spot 1.

After all the players who looked for a parking spot made their decisions (some

have parked along the street and others may have failed to park before the city

center and parked in pay parking lots) and received their payoffs, each parked agent,

including the ones who found a spot in this period, leaves the city with probability

pl. If an agent leaves the city, she will be outside the city in the beginning of the

next period, while if she does not leave the city, she enters next period “in the city

already parked.”

3 Equilibrium

In an equilibrium setting, the existence of lucky and unlucky individuals translates

into the presence of asymmetric Nash equilibria where agents play different strate-

gies, some leading to better outcomes than others.

Our purpose here is not to provide a thorough characterization of Nash equilibria

in this game but rather to show that asymmetric equilibria, where some agents are

luckier than others, can be sustained as equilibria for particular values of parameters

where symmetric equilibria do not exist. Likewise, symmetric equilibria where agents

adopt the same strategy, happen to be stable in a different region of parameter space.

We first consider the case pe, pl & 1/N , where the distinction between different

payoffs have to be normalized accordingly.
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periods becomes immaterial, and then the case pe = pl = 1, where each period

can be considered as a different game. In the former case (pe, pl & 1/N), we find

that symmetric equilibria prevail in the sense that they exist in a broad region of

parameter space whereas only in a rather limited region asymmetric equilibria exist.

In the latter case (pe = pl = 1), we shall see that the converse is true. Symmetric

Nash equilibria only exist for rather specific choices of parameters. The intermediate

region between these two extremes should reveal a qualitative change between the

two polar behaviors. This will be explored with our numerical simulations of learning

dynamics later in the paper.

3.1 The case pe, pl & 1/N

Let us consider case where S = N and the probability of agents entering and leaving

the city in any round is vanishingly small. More precisely, we take pe, pl → 0 but we

keep ratio pe/pl = η finite. This limit allows us to treat the turnover of agents in the

city as a continuous time process, where agents leave the city at unit rate and enter

the city at rate η.4 Take a particular agent i. After a transient time, her probability

to be in the city will converge to a stationary value. The latter should be such

that the probability per unit time of her going into town, given that she was not in

town, equals the probability per unit time of her leaving the city. This condition –

generally referred to as detailed balance – between agents entering and leaving the

city in a time interval, implies that any particular agent, in the stationary state, will

be in the city with probability

1 − h =
η

1 + η
(2)

Since arrival and departures are independent events, the number C of cars currently

parked, in the stationary state, has a binomial distribution

P{C = c} =

(
N

c

)
(1 − h)chN−c (3)

Agents adopt threshold strategies labeled by an integer k: They will go to posi-

tion k and then park in the first free parking s ≤ k which they find. If there is no

free parking slot, they incur the cost L. Call σi,k a mixed strategy for agent i, which

4In this section, time t will be considered a continuous variable. One period of the game
corresponds to a vanishingly small time interval dt = pl. In this time variable, the probability that
agent i enters (leaves) the city in time interval [t, t + dt) is ηdt (dt) for all t and for all agents i out
of (in) the city.
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is the probability that i picks strategy k. We want to investigate Nash equilibria

of this N player game. Since equilibria are not the main subject of this paper, we

relegate the derivation to the appendix, for the sake of clarity of exposition. Here

we shall confine our discussion to the main results and a basic intuition.

In order to discuss asymmetric Nash equilibria, consider the set of pure strategies

{σi,k} = δk,ki , (k1, . . . , kN) a permutation of (1, . . . , N) (4)

where δi,j = 0 if i (= j and δi,i = 1. We find that:

Proposition 1: The strategy profile (4) is a Nash equilibrium, provided:

L ≥ 1

1 + η

N∑

k=1

(
1 +

1

η

)k

π (k) . (5)

This implies that, for any finite L and η, the strategy profile in Eq. (4) is a Nash

equilibrium only for N small enough. For finite η and large N , the right hand side

of Eq. (5) is exponentially large with N , i.e. a huge cost L is required in order for

the asymmetric Nash Equilibrium to exists. Conversely, when η ∼ N is also very

large, the condition (4) is satisfied even for relatively small L.

The intuition behind this result is simple: In order for the asymmetric state

to be stable it must be the case that the worst off agent, who is parking at spot

N , has no incentive to deviate, i.e., her expected payoff from deviating to other

strategies be negative. Only if there is no free spot, which occurs with exponentially

small probability (1 − h)N−1, will she have to pay the cost L. So the penalty is

irrelevant unless L(1− h)N−1 is of order one. A formal derivation, which is given in

the appendix, leads to the specific prediction of Proposition 1.

Let us now consider a symmetric Nash equilibrium where every agent uses the

same strategy σk. In general, a mixed strategy is a distribution on k conditional on

the information available to agent i. This in particular includes the information on

the spots in which she has parked in the past. For the present discussion, we assume

agents to be näıve, i.e., to disregard this latter piece of information. Accordingly, we

shall speak of equilibria with näıve agents. This can be justified for large population

sizes (N * 1), in view of the random arrival of agents in the city.

Proposition 2: A symmetric equilibrium with näıve agents exists in pure strategies,

i.e. σk = δk,k∗ for any value of η and L.

As shown in the appendix, in the limit as N becomes large, this equilibrium has
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the following properties:

• the fraction z∗ = k∗/N of potentially occupied parking slots is less than the

fraction 1 − h of agents wishing to park. In other words, a positive fraction

1 − h − z∗ of agents have to pay the cost L

• the threshold z∗ = k∗/N increases with L and with η (i.e. with the average

number of agents trying to park).

• the probability es that a parking spot is free decreases with s, i.e., the more

profitable a parking spot is, the more likely it is that it is unoccupied.

This equilibrium is not particularly efficient, first because a finite fraction of the

agents have to pay the cost L, secondly because the best parking slots are those

which are more likely to be unoccupied. Indeed all parking slots in the asymmetric

equilibrium are occupied with the same probability and the average payoff of agents

is higher than in the symmetric equilibrium. Hence, the asymmetric equilibrium

is more efficient than the symmetric one, both in terms of better exploitation of

resources and of the average payoff of the agents.

In summary, the analysis of the (näıve) Nash equilibria of the N players game,

for pe, pl & 1, suggests that both symmetric and asymmetric equilibria can arise.

The latter, when N is large, arises either when the cost L is extraordinarily high,

or when the number of free spots is small.

3.2 The case pe = pl = 1

Next we turn to the case where all the parked agents leave the city at the end of

the period (pl = 1) and all the agents who are outside the city at the beginning of

the period come into the city (pe = 1). To make our analysis simple, we consider

the situation where the number of agents wishing to park in the city are the same

as the number of spots available, N = S.

We again consider two outcomes, the symmetric one and the completely asym-

metric one, and see whether they can be Nash equilibria of the game.5 The symmet-

ric outcome is where everyone chooses the same strategy (i.e., ki = k for all i) while

the completely asymmetric outcome is one where everyone chooses different strate-

gies (i.e., without loss of generality, ki = i for all i). The results can be summarized

in the following two propositions:

5We confine our discussion to Nash equilibria in pure strategies.
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Proposition 3: (i) Symmetric outcomes, where everyone chooses the same strategy,

cannot be a Nash equilibrium of the game when N − (N − 1)1+α < 0. (ii) If 0 ≤
L ≤ N

(N−1)1+α − 1, then, the symmetric outcome where everyone chooses strategy 1,

i.e, ki = 1 for all i is a Nash equilibrium of the game.

Proposition 4: The completely asymmetric outcome where everyone chooses a

different strategy is a Nash equilibrium of the game when

L > max
j

(
(N − j + 1)

N−j∑

l=1

1

(l + 1)l
π(N − j + 1 − l)

)
. (6)

It is worth remarking that the stability of the symmetric Nash equilibrium, for

large N , requires that α and L lie within a very narrow range. With a little algebra,

the condition in Proposition 3, can be rewritten as α < − log(1−1/N)/ log(N−1) +
1/(N log N). When this condition is satisfied, the value of L also needs to be very

small. Indeed we have L < N
(N−1)1+α − 1 < 1/(N − 1), which implies that both α

and L should vanish as N → ∞, for the symmetric Nash equilibrium to exist. We

will now prove the two propositions.

To check whether the symmetric outcomes where ki = k for all i, that is when all

individuals choose the same strategy, can be a Nash equilibrium, we need to check

whether a unilateral deviation to k̂ (= k is profitable.

Since, each period, agents arrive at the street in a random order, the expected

payoff for an agent when everyone is choosing strategy k depends on how many

agents have already arrived at the street before her. For example, if i is the first

to arrive which happens with probability 1/N , then she will park at the spot k and

obtain π(k). If she is the second, which again happens with probability 1/N , then

she will park at spot k − 1 and obtain π(k − 1), and so on. That is, if she is the

j(≤ k)-th agent to arrive at the street in that period, she will park at spot k−(j−1)

and obtain π(k − (j − 1)). But if there are more than k agents before her (i.e., she

is the j(> k)-th agent to arrive), then, she will not be able to park before the center

and will obtain −L.

Therefore, the expected payoff for an agent when everyone is choosing strategy

k is

E(Πi(k|k−i = k)) =
1

N

(
k∑

l=1

π(l) − (N − k)L

)
(7)

Now consider the expected payoff from a unilateral deviation. An agent, say i,

can deviate and choose strategy k̂ = k + 1 or k̂ < k, in particular, k̂ = 1. The
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expected payoff for agent i who deviate to k̂ = k + 1 while everyone else is choosing

strategy k can be easily obtained because i can park at spot k + 1 for sure. That is,

E(Πi(k + 1|k−i = k)) = π(k + 1) (8)

Now the expected payoff for agent i who deviates to k̂ = 1 when all the other

agents are choosing strategy k ≥ 2 can be derived as

E(Πi(1|k−i = k, k ≥ 2)) =
1

N
(kπ(1) − (N − k)L) (9)

Intuitively, when all the other players are choosing strategy k, unless there are k

other agents in the street before agent i, i can park at spot 1. If there are more

than k agents before i, i fails to park and obtains −L.

Now, one can check if ki = k for all i can be an equilibrium. We do this by

considering first k = 1 and then k > 1.

When all the agents choose k = 1, unilateral deviation to k̂ = 2 is profitable if

E(Πi(1|k−i = 1)) < E(Πi(2|k−i = 1)). That is, from equations (7) and (8),

1

N
(π(1) − (N − 1)L) < π(2)

or

L >
1

N − 1
(π(1) − Nπ(2)) (10)

With π(s) = 1 −
(

s−1
S−1

)α
and N = S, we have

L >
N

(N − 1)1+α
− 1 (11)

But note that if N−(N−1)1+α < 0, this condition is always satisfied because L ≥ 0.

Thus, ki = 1 for all i cannot be a Nash equilibrium when N − (N − 1)1+α < 0.

Let us now move to the case where k > 1. From equations (7) and (9), unilateral

deviation to k̂ = 1 is profitable if

1

N

(
k∑

l=1

π(l) − (N − k)L

)
<

1

N
(kπ(1) − (N − k)L)

that is, if
k∑

l=1

π(l) < kπ(1) (12)
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which is always true for all k > 1 given the definition of π(s). Thus ki = k(> 1) for

all i cannot be a Nash equilibrium.

From equations (11) and (12), the symmetric outcomes cannot be a Nash equilib-

rium of the game if N −(N −1)1+α < 0. On the other hand, if 0 ≤ L ≤ N
(N−1)1+α −1,

then ki = 1 for all i is a Nash equilibrium of the game, as stated in Proposition 3.

For example, in the case of a linear payoff (α = 1.0), a symmetric outcome is not a

Nash equilibrium for N > 2.

Now let us consider whether the completely asymmetric outcome can be a Nash

equilibrium. Without loss of generality, let us consider an outcome such that agent

i chooses strategy i, i.e, ki = i for all i. Since the payoff is the lowest for i = N

in this particular case, agent N has the highest incentive to deviate. We consider

the possible payoffs that i = N could obtain by deviating from kN = N to another

strategy kN = k < N .

The expected payoff for agent N of a deviation to strategy kN = N − 1 while

other agents are using ki = i for all i < N , ΠN(N − 1|ki = i, ∀i (= N), can be

computed for generic N :

E(ΠN(N − 1|ki = i,∀i (= N)) =
N−1∑

l=1

1

(l + 1)l
π(N − l) − L

N
(13)

In general, the expected payoff from a deviation to strategy kN = N − j(j ≥ 1) is

given by

E(ΠN(N − j|ki = i, ∀i (= N)) =
N−j∑

l=1

1

(l + 1)l
π(N − j + 1 − l) − L

N − j + 1
(14)

Since π(N) = 0, the condition for ki = i for all i to be an equilibrium is, therefore,

given by Eq. (6) as stated in Proposition 4. Note that the critical L increases with

N . The larger is the number of agents (and parking spots), the higher is the cost

required to sustain this equilibrium.6

Summarizing, when everyone searches for parking spots every period, i.e, pe =

pl = 1, we find that symmetric Nash equilibria exist only for α and L being very

small. We have also shown that unless the loss of not parking before the center, L,

is large enough,7 the completely asymmetric outcome is not a Nash equilibrium.

6It should be noted that deviating to N −1 does not necessarily generates the highest expected
payoff for player N .

7In the case of a linear payoff (α = 1.0), the critical L for having the completely asymmetric
Nash equilibrium is larger than the maximum gain from trying to parking at free spots along the
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For intermediate values of α and L we do not have a characterization of Nash

equilibria for general N . For α = 1 and L = 0 we found the following Nash equilibria

for small N

N = 2 : k = {1, 1}

N = 3 : k = {1, 1, 2}

N = 4 : k = {1, 1, 2, 2}

N = 5 : k = {1, 1, 2, 2, 3}

N = 6 : k = {1, 1, 2, 2, 3, 4}

. . .

which suggests that as N increases Nash equilibria exhibit an increasing degree of

asymmetry. For L > 0 we expect an even higher degree of asymmetry.

4 Learning dynamics

What we are interested in this paper, however, is not Nash equilibria per se. We are

interested in whether agents learn to behave in such a way that some agents choose

strategies with small k (lucky ones) while others chooses strategies with large k

(unlucky ones). In order to address this point, we need to introduce the learning

processes.

As stated above, every time agent i searches for a parking spot, she chooses a

strategy k that involves her parking at the first empty spot that is no worse than (as

close to the center as) spot k (i.e., s ≤ k). The choice of strategy in period t depends

on her past experiences from choosing (and not choosing) various strategies. The

past experiences are summarized by agent i’s attractions to each strategy, Ai
k(t), at

the beginning of the period.

The probability with which she chooses strategy k in period t is

P i
k(t) =

exp(λAi
k(t))∑S

j=1 exp(λAi
j(t))

(15)

where λ is a parameter of the model that determines the sensitivity of strategy choice

to attractions. If λ = 0, all the strategies are equally likely to be chosen regardless

street, L ≥ π(1) − π(S) = 1 for all N ≥ 2.

13



of their attractions. As λ becomes larger, the strategies with higher attractions

become disproportionally more likely to be chosen and, if λ = ∞, the strategy with

the highest attraction will be chosen with probability one. As shown by Weisbuch et

al. (2000), λ controls the balance between exploration and exploitation. The logistic

transformation introduced here is common in the literature on learning (see, for

example, Erev and Roth, 1998; Camerer, 2003; Brock and Hommes, 1997, 1998).8

We assume that all the agents have the same attractions for all the strategies at

the beginning of period zero, and that this is equal to the average payoff of parking

along the street, i.e., Ai
k(0) = 1

S

∑S
s=1 π(s) for all k and i.

After searching for a parking spot in period t, the attraction for strategy k evolves

as follows:

Ai
k(t + 1) = ωAi

k(t) + (1 − ω)Ri
k(t) (16)

where ω is the weight put on the past value of attraction. Here the reinforcement

Ri
k(t) is equal to the payoff i has received in period t for all the parking spots where

agent i has actively searched for a spot, i.e.,

Ri
k(t) =

{
π[si(t)] if si(t) ≤ k ≤ ki(t)

0 else
(17)

Here ki(t) is the strategy i has chosen in t and si(t) is the spot i has parked in that

period, i.e., the first empty spot i found such that s ≤ ki(t). We set the convention

that si(t) = 0 if i failed to find an empty spot, and we set accordingly π(0) = −L.

Outside the searched interval, i.e. for k (∈ [si(t), ki(t)], we set Ri
k(t) = 0, and the

attractions depreciate. Note that attractions are not updated and remain constant

when the agent i does not search.

The fact that agents do not update attractions for strategies outside the interval

between where they start searching and where they actually park is reasonable in

a volatile context such as the one we are interested here. Opportunities may have

a short lifetime and be picked up by other agents. Counterfactually updating the

attractions of strategies which were not really played may be unfeasible and/or

unrealistic.

8Erev and Roth (1998); Camerer (2003) use the logistic formulation to better explain the be-
havior of experimental subjects in the laboratory experiments. Motivated by their experimental
results, McKelvey and Palfrey (1995) use this idea to develop the ”Quantal Response Equilibrium”,
which they consider to be a better solution concept because it allows for noisy action choices by
players. Brock and Hommes (1997, 1998) use this logistic function in models where players learn
about performance of various price forecasting strategies in market setting and decide which strate-
gies to choose.
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In the model considered here, all the agents are ex ante identical. In particular,

we assume there is no heterogeneity in risk preferences among agents in order to

understand the role of learning in generating heterogeneous behaviors. However, one

interpretation of our results is that agents learn which level of risk aversion to have.

Thus the “unlucky” agents have learned to be more risk averse than the “lucky”

ones.

As discussed in the introduction, the model has a wider applicability than the

particular example of parking along the one way street. In general, it describes a

situation where agents learn what to accept, while they form their beliefs about the

distribution of opportunities. The underlying distribution of the available opportu-

nities, in its turn, is determined endogenously, as it depends on what other agents

have learned to accept.

4.1 Learning in the N = S = 2 case

Let us consider the simple example of two agents and two parking spots with pe =

pl = 1. As discussed above, player i’s choice of strategy in period t depends on her

attraction for strategy k, Ai
k, asshown in Eq. (15). Let

A(t) =

(
A1

1(t) A1
2(t)

A2
1(t) A2

2(t)

)

be the matrix of attractions for two agents in period t. Since the attractions evolves

as in Eq. (16), we have

A(t + 1) = ωA(t) + (1 − ω)R(t)

where R(t) is the matrix of stimulus agents receive for two strategies in period t,

i.e.,

R(t) =

( [
1+L

2 k2(t) − L
]
[2 − k1(t)] + 1

2 [k
2(t) − 1][k1(t) − 1] 1

2 [k
2(t) − 1][k1(t) − 1]

[
1+L

2 k1(t) − L
]
[2 − k2(t)] + 1

2 [k
1(t) − 1][k2(t) − 1] 1

2 [k
1(t) − 1][k2(t) − 1]

)

where the entry in row i and column k corresponds to the stimulus that agent i

receives for strategy ki = k, given that the other player plays k−i(t) ∈ {1, 2}, where

−i denotes agent 2 if i = 1 and 1 if i = 2. The probability that agent i choses
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strategy k = 1 can be written as

Prob{ki = 1|t} = P i
1(t) =

eλAi
1(t)

eλAi
1(t) + eλAi

2(t)
=

1

1 + e−qi(t)
(18)

where

qi(t) = λ[Ai
1(t) − Ai

2(t)].

This means that choice behavior depends only on qi(t). The learning dynamics can

be derived for this quantity, taking the difference of the equations for Ai
1(t) and

Ai
2(t). With a little algebra, one finds

qi(t) = ωqi(t − 1) + (1 − ω)λ(2 − ki(t − 1))

[
1 + L

2
k−i(t − 1) − L

]
(19)

and similarly for agent 2. Notice that qi(t) is a stochastic variable which depends

on the choice k−i(t − 1) ∈ {1, 2} of the other agent, which in turn is drawn from a

distribution which depends on q−i(t − 1).

In the limit ω + 1 the second term is small compared to the first, which means

that if qi(t) reaches a fixed point value, the stochastic deviations from this will be

small. In other words, it is reasonable to approximate k−i(t − 1) by its expected

value E[k−i(t − 1)] = 2 − Prob{k−i(t − 1) = 1} using Eq. (18). This leaves us with

a dynamical system for the two variables (q1, q2) which has the form

qi(t) = ωqi(t − 1) + (1 − ω)λ
1

1 + e−qi(t−1)

[
1 − 1 + L

2

1

1 + e−q−i(t−1)

]

Fixed points of these equations are of the general form q1 = q + z and q2 = q− z

where q and z, after some algebraic manipulations, are solutions of the following

equations:

q =
λ

2

[
(1 − L)eq/2 + cosh z

cosh q + cosh z

]
(20)

z =
λ

2

[
sinh z

cosh q + cosh z

]
(21)

The second of these equations is always satisfied if one sets z = 0. This corre-

sponds to a symmetric equilibrium where agents behave in the same way (q1 = q2).

In order to study the stability of the solutions, we can introduce the variable
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ζ(t) = [q1(t) − q2(t)]/2. The same algebra as above, leads to

ζ(t + 1) = ωζ(t) + (1 − ω)
λ

2

sinh ζ(t)

cosh χ(t) + cosh ζ(t)
(22)

where χ(t) = [q1(t) + q2(t)]/2. Now, the linear stability of the equilibrium with

χ = q and ζ = z = 0 can be studied through the linearization of Eq. (22) around

χ = q and ζ = 0. This yields

ζ(t + 1) ∼=
[
ω + (1 − ω)

λ

2

1

1 + cosh q

]
ζ(t) + O(ζ2). (23)

Therefore the solution z = 0 is stable as long as

λ

2

1

1 + cosh q
≤ 1. (24)

The region of stability of the symmetric state, in the plane (λ, L), can be obtained

in parametric form (i.e. varying q) combining Eqs. (20) with z = 0 and (24). The

result is shown in Fig. 1. The increase of λ always drives the system from the

symmetric to the asymmetric state. The behavior of the system has however, a

non-trivial dependence on L: For a fixed λ > 4, the symmetric state is stable either

for small L or for large L. For small L, the symmetric state where both players

choose strategy 1 is stable, while for large L, the state in which both players choose

strategy 2 is stable.

5 Simulation results

The cases with larger Ns are not analytically tractable so that we employ numerical

simulations to analyze the learning dynamics. The model presented in the paper

has eight parameters: the number of agent N , the number of parking spots S, the

probability of each agent coming into the city if she is outside the city, pe, and

leaving the city if she is parked in the city, pl. The parameter α determines the

shape of the payoff function, L gives the size of loss in case of failing to park before

the city center, λ governs the sensitivity of parking decisions to attractions to park

and not to park. ω represents the importance of past experiences in the evolution

of attraction.

Initially, we randomly assign agents to parking spots, and let each agent leave the

spot with probability pl. To ensure that the number of agents who look for a parking

17
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Figure 1: Region of stability of the symmetric and asymmetric solutions of the
learning dynamics for the N = 2 case.
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A. The average strategies B. The average spots C. The average payoffs
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Figure 2: The distribution of (A) the average strategies, (B) the average spots
parked, and (C) the average payoffs for each agent. Note that s = 1 is the city
center and the larger the s is, the further the spot is from the center. N = S = 50,
pl = 1.0, L = 0.5, α = 1.0, λ = 100.0, ω = 0.9. The mean (the standard deviation)
of the distributions of average strategies, average spots, and average payoffs are 22.2
(12.7), 21.4 (12.8), and 0.4 (0.2), respectively.

spot in one period and the number of available parking spots at the beginning of

the period is the same on average9, we set pe = plS
N−(1−pl)S

. Thus, effectively, we have

one less parameter for the model. In addition, we first fix the number of agents N

to the same as the number of parking spot S such that N = S = 50.10

5.1 Asymmetric outcomes

Figure 2 shows three distributions: (A) the distribution of the average strategies

chosen, (B) the distribution of the average spots each agent parked11 (average parked

spot), and (C) the distribution of the average payoffs each agent received per search12

from a single simulation run.

The parameters are set so that all the parked agents leave the city at the end of

the period, pl = 1.0, the loss of not finding a parking spot before the city center L

is 0.5, the payoff is linear with respect to the relative distance of the spot from the

center, α = 1.0, players have quite a long memory of past experiences ω = 0.9, and

are sensitive to the attractions in choosing their strategies, λ = 100.0.

9An estimate of the number of available parking spots is obtained assuming that all parking
spots were occupied in the previous period and that each of them was made available with prob-
ability pl, before the present period. This yields Spl free parking spots, and (1 − pl)S agents in
the city parked. Thus, the number of agents outside the city at the beginning of the period is
N − (1 − pl)S and therefore, pe(N − (1 − pl)S) agents will enter the city.

10Note that when N = S, we have pe = 1.
11Let ni(s) be the number of times agent i has parked at spot s in the periods under consideration,

and let f i(s) = ni(s)P
j ni(j) be the relative frequency at which agent i parked at s. Then the average

spot agent i parked is < si >=
∑

s sf i(s).
12Although the average parked spots do not take into the account agents failing to park before

the center, such cases are included in calculating the average payoff per search.
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The data are taken from 500 periods, after letting the simulation run for 5000

periods, i.e., from 5001 ≤ t ≤ 5500. Given the parameter values, agents search for

a parking spot 500 times during these 500 periods.13

The panel (A) and (B) of Fig. 2 show substantial variations in the strategies and

spots chosen by agents. The standard deviations of the distributions the average

strategies chosen and average spots parked are 12.8 and 12.7, respectively. For a

comparison, one should note that the size of standard deviation under the maximum

heterogeneity is 14.58 for both distributions.14 One can see from the figures that

while there are agents who have chosen strategies such that they park at empty spots

far away from the center (large k), there are agents who have chosen strategies to

park very close to the center (small k). Some learned to obtain luckier outcomes

while others did not. Correspondingly, their average payoffs vary.

While the three distributions shown in Fig. 2 demonstrate the heterogeneity

in the average behaviors of agents, we would also like to know how each agent has

behaved. For example, where has an agent who parked on average at spot 25 parked?

Has she parked in a wide range of spots with similar frequencies or in a few spots

around 25 with very high frequencies and not elsewhere? To see this, we have plotted

the distribution of strategies chosen (panel A) and the distribution of parked spots

(panel B) for three agents who obtained the lowest (solid black), median (dashed

black), and the highest (solid gray) average payoff per search in Figure 3. The figure

also shows, in panel C, the distribution of spots that were available when these three

agents searched. Also presented in the figure (panel D) are the basic statistics, such

as the average spot parked and the average strategies chosen, for three agents.

The average payoff per search for the agents with the lowest, median, and the

highest payoffs were 0.10, 0.48, and 0.63, respectively. The figure shows that agents

do not park uniformly across the spots. The distributions of the strategies chosen

by three agents differ substantially from each other. The agent with the lowest

average payoff has chosen strategies leading her to park in the first empty spot and,

therefore, far away from the center (the average strategy was 45). The agent with

the highest payoff, on the other hand, has chosen strategies 4.0, i.e., to park very

close to center, although not right at the center. The agent who received the median

payoff has chosen to park in the first empty spot beyond the half way to the center

(average strategy was 20.0.).

As noted above, the highest average payoff per search was 0.63 for this particular

13The simulation results show that, given the parameter values, the system reaches stationary
states after 5000 periods. See the Figure 11 in the Appendix.

14The maximum heterogeneity can be achieved when both distributions are uniform.
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A. Strategies Chosen B. Spots Chosen C. Spots Available
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(D) Basic Statistics for Three Agents
Ave. Payoff Ave. Spots Ave. Strategy Success Rates No. of Search

Highest 0.63 3.1 4.0 0.78 500
Lowest 0.10 45.0 45.0 1.00 500
Median 0.48 18.4 20.0 0.86 500

Figure 3: The distribution of (A) strategies chosen by agents, (B) spots chosen by
agents, and (C) available spots at the time of search for agents with the lowest
(solid black), median (dashed black), and the highest (solid gray) average payoff per
search. The basic statistics for these three agents are shown in (D). N = S = 50,
pl = 1.0, L = 0.5, α = 1.0, λ = 100.0, ω = 0.9. For 5001 ≤ t ≤ 5500

simulation. But this seems to be too low considering that the agent with the highest

average payoff parked on average around spot 3, which should generate an average

payoff close to 0.94. Why is her payoff so low? The reason is because such agents

sometimes fail to park before reaching the center, and obtain the loss −L. The

success rate, the probability of successfully parking before the center, for the agent

with the highest payoff was 0.78. While those for the agent with lowest and median

payoff were 1.0 and 0.86, respectively. These numbers show that agents who parked

closer to the center often succeeded in doing so, but sometimes failed. A quick

calculation verifies the seemingly low payoff. The agent with the highest payoff

obtained, on average, payoff about 0.94 at success rate 0.78, but failed in about 0.22

of the times and lost 0.5, yielding an average payoff of about 0.63. The remarkable

point is that, despite of such costly failures, the agent with the highest payoff held on

to strategies inducing parking close to, and did not use the ones leading to parking

far away from, the center.

The large differences in the strategies and spots chosen by these agents, as well

as their payoffs, cannot be explained by the differences in available opportunities.

The panel C of the Figure 3 shows that, at the time of search, there is no major dif-

ferences, at least on average, in the available parking spots. Thus, one can conclude

that agents learned to behave in different ways and that this resulted in substantial

variations in the outcomes, although they were facing the similar opportunities.
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Figure 4: Initial dynamics of probabilities of choosing each strategy for 3 players
shown in Fig 3. The colors correspond to that in Fig 3 as well. Note that for t = 0,
all the players are identical.
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To better understand the dynamics of individual behavior, the initial dynam-

ics of the probabilities with which these three agents choose their strategies, P i
k(t),

are shown in Figure 4. As noted above, all these agents are identical at the very

beginning of the simulation, t = 0. Thus, they all have the identical probability dis-

tribution over strategies. As shown in the figure, agents first choose their strategies

randomly. Based on the obtained payoffs and chosen strategies, they change their

strategy choices. For example, the agent with the highest average payoff during

5001 ≤ t ≤ 5500 (shown in gray) has chosen k = 4 in period 0 and obtained a high

payoff. As a result, he learned to play k = 4 with a probability close to one from

t = 1 on. But the probability of this agent choosing strategy 4 becomes a bit lower

in t = 4. This is because the agent failed to find a spot in period 2 and 3. But the

agent tries with strategy 4 again in period 4 and was successful in parking at spot

3. As a result, the probability of her choosing strategy 4 rose again. Although she

failed to park once more in the following period, her probability of choosing strategy

4 remained high. What we can observe here is that once an agent learns to play a

strategy with small k, unless she failed to park before the center too frequently (or

the loss of doing this is too large), she continues to play such strategy.

The results for the agent with the lowest average payoff during 5001 ≤ t ≤ 5500

(shown in solid black) is more complex. The agent has first chosen strategy 46 and

parked in the spot 46. As a result, her probability of choosing the same strategy

became a little bit higher than the other strategies (see t = 1). Next, she has chosen

strategy 41 and again successfully parked at spot 41 (t=2). In the next period,

she has chosen strategy 33 and parked at spot 8. This results in putting higher

probabilities on choosing strategies k ∈ [8, 33] (t=3). Among which, she chose

strategy 14 in the following period and parked at spot 14 resulting in placing a very

high weight in choosing strategy 14 (t=4). In the following period, he chose strategy

14 but failed to park. As a result, the relative weights on strategies k ∈ [1, 14] become

lower while those for k ∈ [15, 33] become higher (t=5). He then chose strategy 27

and parked at spot 27 (t=6). The agent continues to choose strategy 27 and park

at the spot 27 for a while. But as one can see from the result shown in Figure 3,

she learned to park even further away in later periods.

5.2 Dependence on parameters

The previous subsection has shown, for a particular set of parameter values, that

agents who are initially identical, learn to behave differently and sort themselves

into parking at the different spots along the street. Some agents learned to park
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Figure 5: The effect of λ on the heterogeneity of parking behaviors. Dashed: L = 0.5,
Black: L = 1.5, Gray: L = 2.5. The heterogeneity of behavior is measured by
the standard deviation of the distribution of the average parked spots (left) and
by the standard deviation of the distribution of the average strategies (right) . The
statistics are based on taking average from 100 simulation runs. Error bars represent
one standard deviation bound from the 100 simulations. N = S = 50, pl = 1.0,
α = 1.0, ω = 0.9.

far away from, while the others learned to park near to, the center. That is, some

learned to be unlucky while others learned to be lucky. How do such results depend

on the parameters of the model? This subsection analyzes the dependence of the

results on the parameter values.

The simple 2 players case we have considered above shows that there is a critical

value of λ beyond which we will see asymmetric outcomes. The analysis also shows

that the result depends on L. Therefore, we first consider the dependence of the

result on λ and L. As one can easily imagine, when λ = 0, agents always choose

strategies randomly regardless of the values of propensities, and thus, we will not

observe any heterogeneity in the behavior of agents. What happens for larger values

of λ? Figure 5 shows the standard deviation of the distribution of the average parked

spots, σ<s> (left) and the standard deviation of the distribution of the average

strategies, σ<k> (right) for various values of λ. We consider three values of the loss

from failing to park before the center, L = 0.5 (dashed black), L = 1.5 (solid black),

and L = 2.5 (solid gray).15 Each point in the figure is the average value from 100

simulation runs.

The figure shows that heterogeneity increases very sharply with λ for 10.0 ≤
λ ≤ 100, and then it gradually reaches a plateau. This pattern can be observed

for all three values of L. The figure also suggests that L may have an effect on

the degree of heterogeneity for λ ∈ [20, 100] but less when λ is large enough. To

15Other parameters are fixed as in the previous section (Namely, N = S = 50, pl = 1.0, α = 1.0,
ω = 0.9). The data are taken from the 500 periods after the first 5000 periods has past, i.e., from
5001 ≤ t ≤ 5500.
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Figure 6: Effect of L on heterogeneity of parking behavior. Dashed Black: λ = 50.0,
Dashed Gray: λ = 100.0, Black: λ = 150.0 Gray: λ = 200.0

see this differently, Figure 6 plots heterogeneity of parked spots and heterogeneity

against various values of the loss, L, for four values of λ: λ = 50.0 (dashed black),

λ = 100.0 (dashed gray), λ = 150.0 (solid black) and λ = 200.0 (solid gray). As in

the previous figure, each point in the figure is the average value from 100 simulation

runs.

The figure shows that for λ = 150 and λ = 200 the results are not distinguishable

for all values of L ∈ [0.0, 2.5]. The basic pattern is that heterogeneity first increases

slightly with L, and in the interval 0.5 ≤ L ≤ 2.0, it either decreases gradually or,

in some cases, stays constant (heterogeneity of strategies for λ ∈ {150, 200}). For

larger values of L, the degree of heterogeneity declines quite drastically for all values

of λ considered here. The lower degree of heterogeneity under large L is in line with

the analytical results for N = S = 2 case shown above. The fact that heterogeneity

is high even at L = 0 is in line with our equilibrium considerations for large N .16

As noted in the previous section, when L is very high, agents learn to choose higher

k strategies, and the rate at which agents fail to park before the center is lower.

These figures show that as long as λ large enough, and L not too high, we have

very high degree of heterogeneity in the behavior as a result of learning.17 This

should be contrasted with the equilibrium analysis in previous section. There, the

result showed that the larger the value of L is, the easier it is to sustain heterogeneous

outcome.

16Recall that the equilibrium analysis for pl = pe = 1 suggests that for N > 2, even with L = 0
we should expect a high degree of heterogeneity.

17One should note that these results are from 500 periods. Because of all the strategies always
have non-zero probabilities of being chosen, in a very long run, strategies chosen by agents may
change. As shown in Figure 12 in the Appendix, it is indeed the case. If we consider much longer
periods (say 25000 periods) over which to observe the behavior of agents and measure heterogeneity,
then degree of heterogeneity will be smaller, although it is still much larger than for the λ = 0.0
case.
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Figure 7: Standard deviations of the distribution of average strategies (σ<k>) for
various combinations of α ∈ {0.25, 0.5, 1.0, 2.0, 4.0} and ω ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
for three values of L: L = 0.5 (left), L = 1.5 (middle), L = 2.5 (right). σ<k> is
the average from 100 simulation runs. For all the plots λ = 100.0, N = S = 50,
pl = 1.0, and data are taken from 5001 ≤ t ≤ 5500.

How do the results depend on other parameters? Let us now consider ω and

α. Figure 7 show the heterogeneity of parking behavior (measured by the standard

deviation of the distribution of the average strategies chosen, σ<k>) for various

combination of α and ω. Three values of L, L ∈ {0.5, 1.5, 2.5} are considered. What

figure shows is that ω has to be large for there to be a high degree of heterogeneity

in the behavior. The critical ω for which we obtain a high degree of heterogeneity

increases with L.

The figure also shows that heterogeneity emerges more easily when α is high.

This is reasonable since high α means that most of the spots are as good as parking

near the center. On the contrary, when α is small, then most of the spots are as bad

as parking at the furthest spots, thus, we see much lower degree of heterogeneity.

One of the reason for running extensive sets of simulations was to see how the

probability at which those agents who are in the city leave, pl, affects the resulting

outcome. This was because the equilibrium analysis produced quite different results

in the two extreme cases, namely the one where pl and pe are very small and the

other where pe = pl = 1. In particular, the equilibrium analysis suggested that

when pl = pe = 1 we should not expect to see homogeneous outcomes except for

very special values of parameters, while when pe and pl are very small, homogeneous

outcomes always exists.

To see the effect of pl, Figure 8 shows the heterogeneity of parked spots, σs (left),

and chosen strategies σk (right), for various pl and three values of L ∈ {0.5, 1.5, 2.5}
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Figure 8: Effect of pl on heterogeneity of parking behavior. Dashed Black: L = 0.5,
Dashed Gray: L = 1.5, Black: L = 2.5. For all the simulation, N = S = 50,
λ = 100.0, α = 1.0, ω = 0.9

(dashed black, dashed gray, and solid black). Other parameters are set so that

λ = 100, α = 1.0, and ω = 0.9. It can be observed easily from the figure, there is

an increasing relationship between pl and the resultant heterogeneity. Namely, the

higher the pl is, the greater the σk (and thus, σs) becomes.18

5.3 Heterogeneous Agents

In the previous section, we considered cases where agents are ex ante identical,

and showed that heterogeneity in the behavior emerges as agents learn. We have

also shown that the emergence of heterogeneous behaviors depended, partially, on

parameter values. For example, when λ is too low, we did not see differences in the

behavior of agents. What happens if agents are not identical? In particular, what

happens if there are agents with a low λ and a high λ? Since low λ agents behave

quite randomly, such random behavior may interfere with how agents with the high

λ learn to behave. We have experimented with half of the agents having λ = 0.0,

who thus behave randomly, and the other half having λ = 100.0 for three values of

α holding other parameter values the same as in Figure 2 and 3.

The results are shown in Figure 9 and 10. Figure 9 shows the distribution of

the average strategies chosen and the average spots agents parked. As before these

two looks quite similar. The spike around < k >= 25 and < s >= 24 is due to

the existence of agents with λ = 0.0. Since these agents choose strategies randomly,

on average, their chosen strategy will be close to 25. A part from the peak, the

resulting distributions are still flat, suggesting there are lucky and unlucky agents.

18Note that when pl < 1, agents do not search for parking every period. In order to make the
number of searches, at least on average, as similar as possible across various pl, we have taken data
from 5001 ∗ p−1

l ≤ t ≤ 5500 ∗ p−1
l .
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A. The average strategies B. The average spots
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Figure 9: The distribution of (A) the average strategies chosen and (B) the average
spots parked.Half of the agents have λ = 0.0 and the other half have λ = 100.0.
N = S = 50, pl = 1.0, L = 0.5, α = 1.0, ω = 0.9.

In particular, as Figure 10 shows, the agent with the highest (lowest) average

payoff always parks close to (far away from) the center as in the case where all the

agents had λ = 100.0. These two agents had λ = 100.0. One the other hand, the

agent with the median payoff had λ = 0.0, and parked almost uniformly randomly

across all the parking spots. The figure shows that the heterogeneity in the behaviors

emerges even in the presence of randomly behaving agents.

6 Summary and Conclusion

In this paper we consider the idea that luck may not be totally exogenous. In a num-

ber of situations, otherwise identical individuals can find themselves in very different

states. Those who are in the worse positions can be considered as “unlucky”, yet if

the choices available are unequal, then any allocation must treat people asymmet-

rically. It could well be the case that all people choose the same strategy and some

by pure luck get the better opportunities and others do worse. What interested us,

however, was whether it could be the case that some people choose, ex ante, to be

in less favorable positions. Thus it is not the luck of the draw but the conscious

choice of the individuals to be well or poorly treated.

Although we have chosen a simple parking problem as our basic example, there

are many other cases in which individuals have to choose amongst a set of alterna-

tives, whilst other are doing the same and there is no possibilty of going back to the

ones that have been rejected. One has only to think of dating problems, to see that

going back to the best alternative amongst those one has gone out with might be

problematical. In a more serious vein it is not always possible to retake a job offer

that one has previously refused and it may well be the case that other jobs have
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A. Strategies Chosen B. Spots Chosen
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(c) Basic Statistics for Three Agents
Ave. Payoff Ave. Spots Ave. Strategy Success Rates No. of Search

Gray 0.72 1.85 2.0 0.82 500
Black 0.15 42.4 43.0 0.99 500
Dashed 0.43 24.2 26.5 0.91 500

Figure 10: The distribution of (A) the strategies chosen and (B) the spots parked for
agents with the lowest (solid black), median (dashed black), and the highest (solid
gray) average payoff per search. Half of the agents have λ = 0.0 and the other half
have λ = 100.0. Note that s = 1 is the city center and the larger the s is, the further
the spot is from the center. N = S = 50, pl = 1.0, L = 0.5, α = 1.0, ω = 0.9.

already been taken.

Thus while our example is, of course, special it can be re-interpreted to cover a

number of other economic situations. In our case, for some individuals to choose

inferior options leaving the better ones for others can be an equilibrium of the

associated game. Whilst this is interesting in the one-shot case, it is important

to understand what happens in a repeated situation. The question we posed was

whether, in such a case, the individuals can learn to be “unlucky” or “lucky”. That

is, we were interested in whether some individuals learn to systematically make the

poorer choices, and thus always leaving the better opportunities open and letting

others learn to be “lucky”.

We showed analytically, in simple cases, that this can happen. Both symmetric

and asymmetric equilibria can arise, depending on features of the environment where

agents interact. One key parameter is the frequency (pe, pl) with which agents seek

and leave parking spots, i.e. parking turnover. We identify two polar situations

in the static analysis of Nash equilibria. When parking turnover is slow (pe, pl &
1), we find that asymmetric outcomes, when N is large, happen either when the

cost L is extraordinarily large, or when the number of free spots is small, in the

stationary state. At the opposite extreme, we also examine the fast turnover case,

when everyone searches for parking spots every period (pe = pl = 1). In that

case, we find that symmetric Nash equilibria exist only when α and L are very
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small. At the same time, we have also shown that unless the cost of not parking

before the center, L, is large enough, the completely asymmetric outcome is not

a Nash equilibrium. This implies that in the fast turnover case, some degree of

heterogeneity is expected under generic conditions, and it identifies fast turnover as

one of the conditions favoring the emergence of “luck” as a discriminating factor

across agents. Interestingly, simulations show that this intuition also holds in more

complicated cases.

A second interesting point of our analysis concerns the incidence of the cost

L on the resulting outcome. The analysis of learning in the case of two agents

shows that asymmetric outcomes only occur in an intermediate range of values of L.

When L is low (high), the symmetric outcome where both agents choose strategy 1

(2) is stable. Thus, when L is low, the street parking spots are not fully utilized,

while when L is higher, they are fully utilized either because the two players choose

different strategies, or because both players choose the strategy to park further away.

This result is also confirmed by numerical simulations for a larger number of agents.

When the number of agent is large, we do not have symmetric outcomes for low L,

instead we have high degree of heterogeneity even with L = 0. However, for large

enough values of L, the degree of heterogeneity becomes low, and agents learn to

choose strategies with higher k, i.e., to park further away from the center. That is,

when L is very high, it is less likely that we observe “lucky” agents. This is in quite

sharp contrast to the equilibrium result that shows the higher the L is, the more

likely it is to have asymmetric outcomes. However, both in the equilibrium analysis

and in the learning dynamics, high enough values of L lead to the efficient use of

street parking.

One last remark is in order. An alternative explanation for the sort of phenomena

that we have analysed is that people simply have different intrinsic aversions to risk.

However our arguments suggest that these attitudes to risk may well be learned

rather than inherent. This is why we claim that the idea that some people are

“born under a lucky star” does not always stand up to scrutiny.
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A The asymmetric equilibrium for pe, pl & 1

In order to derive the stability condition (4), let us consider the case ki = i. The

agent with the largest incentive to deviate is clearly the worse off, i = N . Let

V (k) = E[uN(s)|kN = k] be the expected payoff of agent N if she deviates to pure

strategy k. Then

V (k) = ekπ(k) + (1 − ek)V (k − 1), ek = P{k is free} (25)

because if parking s = k is occupied, agent N ’s situation is the same as if she had

chosen strategy k − 1. Clearly V (N) = π(N) = 0 and V (0) = −L, because if there

is no empty parking, agent N will have to pay cost L. In the Nash equilibrium we

are studying, each position is occupied by a specific agent, so the probability ek = h

that spot k is free is the probability that the corresponding agent is not in the city.

The solution of Eq. (25) is easily obtained introducing generating functions for V (k)

and π(k) and it reads

V (k) = h
k∑

j=1

(1 − h)k−jπ(j) − (1 − h)kL (26)

It is clear that this is largest for k = N − 1. The condition for the stability of the

Nash equilibrium can be recast as a condition on the cost agent N incurs if there is

no free space, which is Eq. (4).

B The symmetric equilibrium for pe, pl & 1

Let xs = 1 if spot s is empty and xs = 0 if it is empty. In the stationary state, the

detailed balance condition reads

P{xs = 1}W{xs = 1 → 0} = P{xs = 0}W{xs = 0 → 1}

where W are the transition rates (probability per unit time). Now, es = P{xs =

0} = 1 − P{xs = 1} and W{xs = 1 → 0} = 1, which is just the rate at which

agents leave the city. The rate W{xs = 0 → 1} requires more work. The number

W{xs = 0 → 1}dt of agents who reach site s in a time interval dt, is proportional

to the number Nh of agents not in the city, times the probability ηdt that each of

them enters the city in time interval dt, times the probability qs that she actually

reaches spot s (see below). In other words, W{xs = 0 → 1} = Nηhqs. Combining
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these relations we have

es =
1

1 + N(1 − h)qs
(27)

In order to compute the probability qs that an agent arrives at spot s we have to

consider all those events where she aims at some k ≥ s and finds no empty place

before s. If σk is the probability of choosing to start at site k, we have

qs = σs + (1 − es+1)σs+1 + (1 − es+1)(1 − es+2)σs+2 + . . . + (1 − es+1) · · · (1 − eN)σN

= σs + (1 − es+1)qs+1 (28)

This allows us to derive a backward equation for es in terms of σk:

es =

[
1 + N(1 − h)σs +

(1 − es+1)2

es+1

]−1

(29)

On the other hand, agents maximize their expected utility

V (σ) =
N∑

s=1

qs(σ)esu(s) − Lq0(σ)

with the constraint
∑

k σk = 1. Taking into account that

∂qs

∂σk
= θ+(k − s)

k∏

j=s+1

(1 − ej)

where θ+(k) = 0 if k < 0 and θ+(k) = 1 for k ≥ 0, the marginal utility of choosing

to start at k is

µk =
∂V

∂σk
=

k∑

s=1

u(s)es

k∏

j=s+1

(1 − ej) − L
k∏

j=1

(1 − ej), k = 1, . . . , N. (30)

Notice that:

µk+1 − µk = ek+1 [u(k + 1) − µk] (31)

The optimality condition implies that σk > 0 on the set of values of k where

µk is maximal. Let us analyze Eq. (31) in detail. At k = 1, we have µ1 =

u(1)e1 − L(1 − e1) = u(1) − (1 − e1)[L + u(1)]. So the curve µk vs k starts below

the curve u(k) for small k. As long as this is true, µk increases with k, as indicated

by Eq. (31), whereas u(k) decreases with k by hypothesis. There should be a point

k∗ where the two curves cross (i.e. u(k∗) > µk∗−1 and u(k∗ + 1) < µk∗) and this is
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where µk attains its maximum. Generically, for a given es, the maximum will be

attained on a single point k∗. Therefore, the best response will be σk = δk,k∗ . The

only problem which remains is that of characterizing the threshold k∗ as a function

of η, u(k) and L. Much progress can be made by taking the limit N → ∞. First

we set

es =
1

N
ε(z), z = s/N (32)

µk = m(z), z = k/N (33)

u(k) = ν(z) (34)

k∗ = Nz∗ (35)

Then Eqs. (29,31) can be cast in the form

dε

dz
= −ε2, 0 ≤ z ≤ z∗ (36)

dm

dz
= ε(ν − m) (37)

The first is easily integrated with the initial condition ε(z∗) = 1/(1 − h) = 1 + 1/η

and it yields

ε(z) =
1 + η

η − (1 + η)(z∗ − z)
=

1

z0 + z
, 0 ≤ z ≤ z∗. (38)

with z0 = η/(1 + η)− z∗ The second is also easily integrated and it gives (note that

m(0) = −L)

m(z) =

∫ z

0

due−
R z

u dyε(y)ν(u)ε(u) + m(0)e−
R z
0 dyε(y) (39)

=
1

z0 + z

[∫ z

0

dz′ν(z′) − Lz0

]
(40)

the condition for z∗ is now ṁ(z∗) = 0 or u(z∗) = m(z∗). This gives

∫ z∗

0

dz′ [ν(z′) + L] =
η

1 + η
[ν(z∗) + L] (41)

It is easy to show that

z∗ ≤ η

1 + η
= 1 − h (42)

is less then the fraction of agents at work, and also the number of empty slots left
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Figure 11: The time series of the measures of heterogeneity.

for s ≤ k∗ is
k∗∑

s=1

es =

∫ z∗

0

dzε(z) = log

[
η

η − (1 + η)z∗

]
(43)

This means that a fraction 1 − h − z∗ of the agents does not find an empty spot

and has to pay the cost L. Therefore the expected utility of an agent in this Nash

equilibrium is

Es[u] =

∫ z∗

0

dzν(z) − (1 − h − z∗)L (44)

where the first term is the utility of parked agents and the second is the cost of those

who didn’t find a place19

The same calculation for the asymmetric Nash equilibrium, when it is stable,

gives

Ea[u] = (1 − h)

∫ 1

0

dzν(z) (45)

so for fixed L and large N , we know the asymmetric Nash equilibrium is stable only

in the limit h → 0 and in this limit it provides higher utility to agents.

C Stationarity of simulation result

The results shown in main text are all based on the statistics taken from 5001 ≤
t ≤ 5500 (for pl = 1.0 and adjusted appropriately for other values of pl). One

may question whether the results we are reporting is transient or not. As shown

by Figure 11, our measure of heterogeneity is quite stable, and therefore, one can

consider that initial 5000 periods were enough for the simulation to reach “steady

19To get this, pick an agent at random: with probability h, she’s not in the city, and the
contribution to the utility is zero. With probability (1 − h)(1 − es) + 1 − h she is parked in spot
s ≤ k∗ and otherwise she is paying the cost L.
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Figure 12: Long run outcomes. The standard deviation of the distribution of the
average parked spots over many trials. λ = 100, pl = 1.0, L = 0.5, α = 1.0, ω = 0.9.

state.”

D Over longer periods

Figure 5 shows that for λ above certain value, we obtain heterogenous behaviors

among agents. So far, the data were taken from the 500 periods after 5000 peri-

ods have past from the beginning of the simulation. What happens if we consider

outcomes from longer intervals? Because of the randomness in the strategy choices,

we expect that the longer the time horizon we consider, the less heterogeneous the

behaviors of the agents become.

Figure 12 shows the σ<s> and σ<k> for various number of periods20 up to 250000

periods for λ = 100. One can see that the longer the periods we consider, the lower

the degree of heterogeneity becomes. But as noted, this is unavoidable because of

the randomness in strategy choices.

20All after the initial 5000 periods have past.
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